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Abstract

Viral deep-sequencing technologies play a crucial role toward understanding disease
transmission network flows, because the higher resolution of these data compared to stan-
dard Sanger sequencing provide evidence into the direction of infectious disease transmis-
sion. To more fully utilize these rich data and account for the uncertainties in phylogenetic
analysis outcomes, we propose a spatial Poisson process model to uncover HIV transmis-
sion flow patterns at the population level. We represent pairings of two individuals with
viral sequence data as typed points, with coordinates representing covariates such as sex
and age, and the point type representing the unobserved transmission statuses (linkage
and direction). Points are associated with observed scores on the strength of evidence for
each transmission status that are obtained through standard deep-sequenece phylogenetic
analysis. Our method is able to jointly infer the latent transmission statuses for all pair-
ings and the transmission flow surface on the source-recipient covariate space. In contrast
to existing methods, our framework does not require pre-classification of the transmission
statuses of data points, instead learning them probabilistically through a fully Bayesian in-
ference scheme. By directly modeling continuous spatial processes with smooth densities,
our method enjoys significant computational advantages compared to previous methods
that rely on discretization of the covariate space. We demonstrate that our framework can
capture age structures in HIV transmission at high resolution, and bring valuable insights
in a case study on viral deep-sequencing data from Southern Uganda.

1 Introduction

As a decades-long global pandemic, the human immunodeficiency virus (HIV) has most
severely affected Africa with 1 in every 25 adults living with the HIV virus, accounting for
more than two-thirds of infections worldwide (Eisinger and Fauci, 2018; Fauci and Lane,
2020). International public health organizations have proposed to combat HIV by targeting
intervention efforts toward high-risk populations. To achieve this, it is important to under-
stand and characterize transmission patterns between different groups and sub-populations,
which requires the inference of mostly unobserved transmission flows between infected in-
dividuals. Facilitated by recent advances in phylogenetic analysis technologies for processing
viral RNA sequences collected from persons living HIV, researchers have gained insights about
individual-level transmission links, as well as population-level transmission flows and patterns
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(Romero-Severson et al., 2016; Leitner and Romero-Severson, 2018; Rasmussen et al., 2018;
Ratmann et al., 2020; Bbosa et al., 2020; Scire et al., 2020; Hall et al., 2021; Zhang et al., 2020).
Such phylogenetic analysis outputs, when jointly analyzed with demographic information from
population-based studies, continue to improve our understanding of HIV transmission struc-
ture between high-risk groups. However, such joint analysis is challenging as phylogenetic
inference outputs and demographic information take different data modalities, and there is
high uncertainty associated with phylogenetic analysis that is difficult to quantify statistically.
Most existing approaches often neglect the phylogenetic analysis uncertainty by arbitrarily
thresholding the outputs, and also discretize on demographic covariates which can lead to re-
duced inference resolutions and heavy computational burdens. It is thus desirable to develop a
principled statistical approach that respects and accounts for uncertainty, maintains the high
resolution of demographic information, and improves on scalability.

The overarching goal of this paper is to develop such statistical methods to better lever-
age both phylognetic analyses and population demographics toward understanding the age
structure of heterosexual HIV transmissions using a fully stochastic generative model. In par-
ticular, we seek to infer the relative densities of transmissions between different age groups
from demographic information together with phylogenetic analysis summaries of viral deep-
sequencing data. Naturally, the direction of events, i.e., “who infected whom”, informs our
understanding of the age-structured transmission patterns, but these events are not observ-
able in practice. Instead, they can be indirectly informed by the viral sequences sampled
from infected individuals. Deep-sequence phylogenetic analysis tools such as Phyloscanner
(Wymant et al., 2018) or QUENTIN (Skums et al., 2018) compare the HIV molecular genetic
diversity in virus variants of each individual sampled and generate probabilistic summaries
about the transmission relationship between pairs of deep-sequenced individuals — how likely
that they shared a transmission link, and how probable that one infected the other or vice
versa. Using such probabilistic summary statistics, we model the underlying ground truth
transmission structures as latent surfaces in a plane whose axes denote covariates of the in-
dividuals, and we focus here on the ages of the source and recipient, respectively. In doing
so, we represent the transmission structure as an interpretable and continuous latent “spatial”
variable.

This scientific task can be cast as the challenge of making inference on the latent trans-
mission structure from marked points. Each point corresponds to a pairing of two individuals,
and here we focus on describing the coordinates of the point in terms of the sex and con-
tinuous age of the two individuals. The “type” (or “mark”) of the point describes whether
transmissions occurred between pairs and the direction of transmission. The type of each
point is unknown but phylogenetic data provides strength of evidence for each type. Under
this perspective, hierarchical spatial Poisson process models on typed point patterns provide
a natural choice for inference of population-level transmission flows. A key advantage of our
point-pattern approach lies in its use of continuous spatial surfaces, which is able to preserve
richer information and underlying patterns that a discretized representation may obscure ap-
proach. Moreover, our continuous formulation avoids the need to keep track of discrete grids
based on pre-specified age groups (such as 1-year or 5-year age groups), a common choice in
epidemiological studies (e.g., Hyman et al. (1994); Heuveline (2004); Sharrow et al. (2014)).
Such discretization requires heuristic choices a priori and leads to computationally intensive
downstream analysis. Compared to recent work in Xi et al. (2022) that introduced a semi-
parametric Poisson flow model on discrete age strata and thus tracks a discrete latent grid of
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transmission intensities, our continuous modeling approach significantly improves scalability,
and also offers the user flexibility to discretize or summarize output at any resolution post-
hoc. Another important advantage of our model over existing work is that it no longer requires
specifying ad hoc thresholds on the phylogenetic data summaries because the model infers the
unknown linkage and transmission direction status of each pairing simultaneously. As a result,
we appropriately propagate the uncertainty in transmission links and directions as captured
in the phylogenetic scores.

Prior work Spatial Poisson process models have been widely applied to the study of point-
referenced two-dimensional data (Banerjee et al., 2003; Huber, 2011; Cressie, 2015). Hetero-
geneity in spatial point patterns is often modelled through non-homogeneous Poisson processes
(NHPPs), where the structure of the intensity function can be described using various choices
of Bayesian mixture models. NHPP intensity functions have been parameterized through
Markov random fields for piecewise constant functions based on Voronoi tessellations (Heikki-
nen and Arjas, 1998), weighted Gamma process mixtures of non-negative kernel functions (Lo
and Weng, 1989; Wolpert and Ickstadt, 1998; Ishwaran and James, 2004), Gaussian process
mixtures of log-transformed components (Møller et al., 1998; Brix and Diggle, 2001; Adams
et al., 2009), and Dirichlet process mixtures (Ji et al., 2009; Zhou et al., 2015; Zhao and
Kottas, 2021). Kim and Kottas (2022) offer an excellent summary. Our framework builds
on previous developments in Dirichlet process mixtures that focus on learning a normalized
functional form of the NHPP intensity (Kottas and Sansó, 2007; Kottas et al., 2008; Taddy
et al., 2012), which we will see admits tractable and efficient inference procedures.

In recent years, Poisson process models have been extended to study spatial point patterns
that are latent or partially observed, in that only certain indirect “signals” associated with the
underlying spatial pattern are observed, with uncertainty about the quantity and locations
of the latent points (Vedel Jesen and Thorarinsdottir, 2007; Ji et al., 2009). Joint modelling
of the “signals” and the latent point process through Bayesian data augmentation has been
successful, thanks to the ease of incorporating missing information as latent variables in a
Bayesian inference framework (Givens et al., 1997). However, to our knowledge, much of the
existing work in spatial Point process models focuses on one set or type of spatial points, rather
than a combination of multiple types of latent point patterns whose “types” are associated with
practical interpretation, but are not observed. Our framework bridges this methodological gap
by exploiting “signals” that inform the latent type labels in a marked spatial Poisson process
model.

Our continuous spatial process approach in modelling disease transmissions marks a con-
trast to the body of work that relies on count data in discretized spatial areas (Berke, 2004;
Best et al., 2005; Wakefield, 2007; Gschlößl and Czado, 2008; Mohebbi et al., 2014; Bauer
et al., 2016; Johnson et al., 2019). These discrete or areal spatial models often involve the
use of Gaussian Markov random fields (GMRF) (Rue and Held, 2005) or other Gaussian-
based models to handle spatial dependence structures. Due to the high computational cost
associated with Gaussian covariance matrix operations, inference has to be performed through
numerical approximation techniques such as integrated nested Laplace approximations (INLA)
(Rue et al., 2009) and still entails intensive computation. These computational challenges are
inevitable when only aggregate data are available (Gschlößl and Czado, 2008; Mohebbi et al.,
2008), but given access to point-level data, formulating a continuous spatial model becomes
more appealing than a discretized one. This is because (1) directly modeling a continuous
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spatial process avoids expensive spatial smoothing techniques such as the GMRF, and (2) a
continuous point pattern surface can induce a discrete spatial model at any desired resolution,
avoiding the need for manual discretization before analysis (van de Kassteele et al., 2017; Xi
et al., 2022). In the context of our application, where age is known for every surveyed in-
dividual and can be treated as a continuous variable, employing a continuous spatial model
provides a more natural and efficient approach.

In the rest of this paper, we first provide an overview of the motivating data and develop
a model framework in Section 2. Our likelihood-based Poisson process model is outlined
in Section 3. In Section 4, we show results from simulation experiments, and in Section 5
we present an application to large-scale HIV deep sequence data from the Rakai Community
Cohort Study in Southern Uganda that was collected between 2010 to 2015. Section 6 presents
our conclusions.

2 Data and Model
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Figure 1: The data. Panel A: paired ages of heterosexual patients that are considered potential
HIV transmission pairs; our method aims to analyzing all 539 potential transmission pairs
(both gray and dark dots), whereas previous analysis with existing methods would pre-exclude
“low-confidence” pairs and only include 242 pairs (in dark dots). Panels B and C: the linkage
scores (ℓi’s) and direction scores (di’s) for the paired individuals, as pre-processing results
from phylogenetic analysis using phyloscanner ; previous analysis would only consider pairs
with linkage scores > 60% (indicated by dark dashed line in panel B) and direction scores
below 33.3% or above 66.7% while discarding pairs with scores in the “uncertain” region.

HIV deep-sequencing data were obtained from blood samples of study participants with HIV of
the longitudinal, open, population-based Rakai Community Cohort Study in Southern Uganda
between August 2011 and January 2015 (Ratmann et al., 2019). A total of 25,882 individuals
participated during the study period, among whom 5142 were HIV seropositive. Based on
exclusion criteria on HIV viral load, viral sequence read depth and length (Wymant et al.,
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2018; Ratmann et al., 2019), virus from 2652 participants was deep-sequenced. Detailed
demographic, behavioural and healthcare data are available for all participants, including
their sex and exact age. The cohort study also obtained data on names of cohabitating sexual
partners which can be used to validate sexual interactions that could contribute to disease
transmission.

The data that motivate our model consist of a subset of 539 heterosexual pairs of partici-
pants considered as potential HIV transmission pairs based on phylogenetic evidence extracted
using Phyloscanner and epidemiological data (see illustration in Figure 1). Although these
pairs are considered as likely transmission pairs, there is high uncertainty about the existence
of transmission links and directions between each pair of individuals, and there is substantial
variability in the strengths of phylogenetic evidence in support of pairwise transmission rela-
tions. There are two main aspects of the data: the first facet consists of the set of these pairs of
individuals. This set is represented by their respective ages, denoted S = {si = (ai1, ai2)

T }Ni=1,
where the 2-dimensional vector (ai1, ai2) records the male’s age ai1 and female’s age ai2 in the
ith pair. In our application, sample size N = 539. Our model will later envision these points
of paired ages as an observation from a spatial process describing the transmission structure.

The second aspect consists of two scores (in the range of [0, 1]) that are outputs from phy-
logenetic analysis of HIV deep-sequencing data. For each pair i of heterosexual individuals,
the phylogenetic software phyloscanner produces two scores — a linkage score and a direction
score — by statistically comparing the patristic distances and topological configurations of
the viral reads in deep-sequence phylogenies, repeatedly over a large set of sliding, overlap-
ping genomic windows across the HIV genome (Ratmann et al., 2019). The linkage score ℓi
represents the posterior probability of the pair sharing a transmission link in the transmission
process under a Binomial count model of window-specific linkage classifications (Ratmann
et al., 2019). The direction score di, on the other hand, measures the posterior probability
of transmission taking place from the male to the female in this pair under a similar count
model. We collectively denote the phylogenetic scores for the ith pair by xi = (ℓi, di)

T .
Our goal is to make inference about the population-level transmission flows during the

observation period in the study communities by age and sex strata, using the combined de-
mographic and deep-sequence phylogenetic data. However, the linkage and direction scores
produced by deep-sequence phylogenetic analysis do not directly classify the data points. They
instead reflect uncertainties about individual transmission events; we therefore model xi as
a “signal” that comes with each point si, and call the set {xi|i = 1, . . . , N} the “marks” as-
sociated with the point pattern. Whether a transmission occurs between each pair and the
direction of the potential transmission are unknown, and will be accounted for as latent vari-
ables that connect xi and si in the stochastic model described below. Doing so accounts for
these uncertainties in a more statistically principled way, departing from conventions in exist-
ing approaches that essentially filter for high-confidence pairs only, which not only results in
deterministic a priori choices, but entails throwing away much of the data.

2.1 Stochastic model framework

We now introduce our model for the point data S = {si = (ai1, ai2)
T }Ni=1 with associated

phylogenetic transmission and direction scores (i.e., marks) xi = (ℓi, di)
T . To each point we

introduce a categorical latent “type” ci that corresponds to three possible events: transmission
did not occur between the two individuals that define the point (denoted by ci = 0), trans-
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mission occurred from the male to the female individual (denoted by ci = 1), or transmission
occurred from the second to the first individual (denoted by ci = −1). Since the marks xi

partially inform the likelihood of transmissions and their directions, it is natural to consider a
joint model for the point pattern S = {(ai1, ai2)T }Ni=1 and observed signals {xi}Ni=1 connected
through ci. Our framework can be thought of as a marked spatial Poisson process, where the
mark distribution at each point location depends on the latent type label of each observed
point. In the rest of this subsection, we outline two key components of this framework: a
spatial Poisson process with a density function modelled by Dirichlet process Gaussian mix-
tures, and a type-dependent distribution for the marks. We note that this framework, though
motivated by our application, can be applied to many similar data sets of spatial patterns
with latent labels and associated signals.

Suppose we have a spatial point pattern defined on a 2-dimensional space S × S, where
S = {si}Ni=1 is the set of all points, and each point si = (si1, si2)

T is represented as a point
in this plane. The observed signal (i.e., marks) corresponding to each point si is denoted by
xi ∈ Rd,which follows some distribution determined by the type label ci (∈ K) of the point si.
Note that in the context of our application, d = 2 as we consider phylogenetic scores. In the
context of our application, S is the continuous age of individuals under study, S = [15, 50);
each point si = (ai1, ai2)

T corresponds to the ages of the two individuals forming a pair,
ordered by gender; and the latent types are K = {−1, 0, 1}, corresponding to female-to-male
transmission, no transmission and male-to-female transmission.

I: the spatial point process We model the observed points in S as a realization of a 2D
Poisson process on S × S:

S ∼ PP (λ). (1)

Following Kottas and Sansó (2007) we decompose the intensity function λ into a scale com-
ponent γ and a density function f(·)

λ(·) = γf(·), (2)

so that f(·) satisfies
∫
S×S f(s1, s2)ds1ds2 = 1. This decomposition separates the intensity

function into two terms which are simpler to write out in the likelihood function and make
inference computationally tractable. We next model the density function f(·) as a mixture of
K different “types”:

f(·) =
∑
k∈K

pkfk(·), (3)

where pk is the probability of points belonging to type k, and fk(·) is the spatial density
function for type k. In our application, K = {−1, 0, 1} and, for instance p1 corresponds
to the proportion of male-to-female transmission events among all pairs of individuals being
considered, and f1(·) corresponds to the 2D function that captures the across-age transmission
pattern with male sources and female recipients.

There are various choices to model the structure of the density functions fk(·). To balance
simplicity and flexibility, we choose a Dirichlet process (DP) Gaussian mixture model, abbre-
viated “DPGMM”, consisting of bivariate Gaussian components fk(·). Specifically, for each
point si, if its type label ci = k, then

si | ci = k ∼ N(θki,Σki), (θki,Σki) ∼ Gk, Gk ∼ DP (αk, G0). (4)
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Here Gk represents the (infinite) mixture of bivariate normals model for type k, and θki and
Σki are the mean vector and covariance matrix for the bivariate Gaussian component that si
belongs to. In practice, Dirichlet process mixtures are often treated as a finite mixture but
with a flexible number of components. Indeed, the above defined model may be expressed
equivalently in the following manner in terms of each density function fk(·)

fk(·) =
Hk∑
h=1

wkhBVN(·; θkh,Σkh), (5)

where Hk denotes the number of “active” components, or total number of unique components
generated by the DP, and each (θkh,Σkh) is a unique Gaussian component for the type-
k density. Here, BVN((s1, s2); θ,Σ) denotes the probability density of a bivariate normal
distribution with mean θ and covariance Σ.

II: the signal distribution We next model the signal distributions that connect the ob-
served data to the latent process described above. We view the signal xi as a “mark” associated
with each point si providing information on its true type ci. Naturally, the probability distri-
bution of si should then depend on its latent label ci: that is, conditional on ci, the general
form of the probability density (or mass function) for xi can be written as

p(xi | ci = k) = ϕk(xi). (6)

This implies that our framework can be generally applied to modeling any spatial point pat-
terns with associated signals that have signal probabilities dependent on the (latent) properties
of the spatial points, as long as the density or probability function ϕk(·) is well-chosen and
well-defined.

Here, we adopt logit-normal distributions for the signal scores xi = (ℓi, di)
T defined on

(0, 1). Specifically, given the true labels ci, we model the signals through

logit(ℓi) | ci ∼ N(µ̃ℓ,i, σ
2
ℓ ), (7)

logit(di) | ci ∼ N(µ̃d,i, σ
2
d), (8)

where

µ̃ℓ,i = µℓ1 [ci ̸= 0] , (9)
µ̃d,i = µd1 [ci = 1] + µ−d1 [ci = −1] . (10)

Following the construction of the linkage and direction scores, it is more probable for the
linkage score ℓi to be larger for an actual transmission event and the direction score di to be
larger for a male-to-female transmission. We thus effectively posit a mixture model for the
scores: with µℓ > 0, (9) implies that the linkage score ℓi is likely to exceed 0.5 for a real
transmission event (ci ̸= 0); with µ−d < 0 < µd, (10) implies that di is likely larger than 0.5
for a male-to-female event (ci = 1) but smaller than 0.5 for a female-to-male event (ci = −1).
Note that such design uses the property logit(0.5) = 0.
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2.2 The complete data likelihood

From the descriptions in the previous section, we see that the two key components in the
model—the spatial process and the emission or signal distribution —are linked through the
latent types ci. A point i with true label ci = k contributes the term γpkfk(si)×ϕk(xi) to the
data likelihood. Here the first term γpkfk(si) comes from the intensity of the spatial process
(model for the age structure), and the second term ϕk(xi) comes from the signal distribution
(model for the phylogenetic scores), both conditioned on ci = k. Naturally, because all the ci’s
are unknown, evaluating the likelihood function based on observed data only would require
considering and marginalizing over all possible values of k that each ci may take. Thus, we
can instead construct the likelihood function given the “complete” data, which include the
coordinates of all N points in the set S, the observed signals xi as well as the type labels ci
for all i = 1, . . . , N :

L(Θ; {xi}, {ci}, {si}) = γN
e−γ

N !

∏
k∈K

∏
i:ci=k

pkfk(si)ϕk(xi) (11)

=
∏

i=1:N

ϕ(xi1 | µ̃ℓ,i, σ
2
ℓ )ϕ(xi2 | µ̃d,i, σ

2
d) (12)

× γN
e−γ

N !

∏
k∈K

∏
i:ci=k

(
pk

Hk∑
h=1

wkhBVN((si1, si2); θh,Σh)

)
.

Here ϕ(·;µ, σ2) is the normal p.d.f. with mean µ and variance σ2, and the model parameters
are Θ = {γ,p,µ, σ2

ℓ , σ
2
d, {(θkh,Σkh)}, {αk}} (let p = (p−1, p0, p1)

T , µ = (µℓ, µd, µ−d)
T ). The

following section discusses our approach to inference in practice when information such as ci
is missing.

3 Bayesian inference with data augmentation

We now derive an efficient Bayesian inference scheme for estimating model parameters Θ
based on the likelihood function (12). Note that given known type labels ci, we no longer
need to infer the transmission link and direction from the scores, and thus the age structures
for each transmission direction can be learned straightforwardly by independently estimating
the density function fk for each type k, which is standard for a Gaussian mixture model with
Dirichlet process priors (Rasmussen, 1999).

When the type label ci’s are unknown, however, parameter estimation is complicated as
deriving the marginal likelihood of the observed data is nontrivial. Basing inference on the
marginal likelihood would entail integrating over all possible configurations of the unknown
labels ci’s of all the spatial configurations. Instead of a direct approach based on the observed
data likelihood, we exploit the complete data likelihood and adopt a data augmentation frame-
work for inference. That is, we treat the unobserved labels ci’s as latent variables, and “aug-
ment” the observed data by sampling candidate values of ci in each iteration of the sampler.
These settings for ci within each iteration of the sampler “complete” the data, enabling the
use of (12) and thus rendering updates for the other parameters tractable.

With appropriate prior choices p0(Θ) on all parameters Θ, we can derive the joint posterior
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density for all unknown quantities, including parameters Θ and type labels {ci}’s:

p(Θ, {ci} | {xi}, {si}) ∝ L(Θ; {xi}, {ci}, {si})p0(Θ). (13)

The data-augmented inference framework is employed through a Bayesian Markov chain
Monte Carlo (MCMC) sampler, which can be roughly divided into two major components in
each iteration: (1) sample or update parameters Θ conditioned on configurations of the {ci}’s
from p(Θ | {xi}, {ci}, {si}); and (2) sample ci for each i given values of Θ from p(ci | Θ,xi, si)
utilizing the factorized form of the complete data likelihood in (12).

To improve efficiency of the MCMC sampler, we prescribe conjugate or semi-conjugate
priors whenever possible to enable straightforward Gibbs sampling exploiting full conditional
posterior densities that exist for almost all parameters. Below we detail these prior choices
and discuss each step of the MCMC sampler. We also provide a summary of our sampling
algorithm in online Supporting Information (see Web Algorithm 1).

Scale parameter γ: Due to the scale decomposition in (2), sampling the parameter γ is
straightforward and can in fact be done independently of the Markov chain that samples the
remaining parameters. That is, if we assume a Gamma prior γ ∼ Ga(a0, b0), we may directly
draw samples using

γ | {xi}, {si} ∼ Ga(α0 +N, β0 + 1).

Signal distribution parameters µ, σ2
ℓ , and σ2

d: Conditioned on type labels {ci}, the
signal distributions (7) and (8) are simple 1D normal models. Assuming diffuse priors µℓ, µd ∼
Unif((0,∞)), µ−d ∼ Unif((−∞, 0)) and inverse-Gamma priors σ2

ℓ , σ
2
d ∼ inv-Gamma(ν0/2, ν0σ2

0/2),
parameter updates only require straightforward Gibbs steps using the full conditionals. For
example, for the linkage score parameters µℓ and σ2

ℓ , we draw

µℓ | σ2
ℓ , {ℓi}, {ci} ∼ N(0,∞)

∑
i:ci ̸=0

logit(ℓi), σ2
ℓ /N+

 ;

σ2
ℓ | µℓ, {ℓi}, {ci} ∼ inv-Gamma

(
ν0 +N+

2
,
ν0σ

2
0 +

∑
i:ci ̸=0(logit(ℓi)− µℓ)

2

2

)
.

Here N+ =
∑N

i=1 1(ci ̸= 0) is the total number of real transmissions given the {ci} configu-
rations, and N(0,∞) denotes a normal distribution truncated on the positive real line. For the
direction score parameters µd, µ−d and σ2

d, sampling steps are almost exactly the same.
Type probability p: Assuming a Dirichlet prior for the vector p = (p−1, p0, p1), p ∼

Dir(q−1, q0, q1)
T , given configurations for {ci}, we can draw

p | {ci} ∼ Dir (q−1 +N−1, q0 +N0, q1 +N1) ,

where Nk =
∑N

i=1 1(ci = k) is the total number of data points belonging to type k.
DP precision parameter αk’s and component weights wkh’s: For the precision

parameter αk and weights wkh for each type k, we adopt a truncated DP mixture model (with
a large maximum number of mixtures) to approximate the (infinite) DP mixture, which is a
technique described in Section 3.2 and the Appendix in Ji et al. (2009). More specifically, we
use the auxiliary sampling trick introduced in Escobar and West (1995) to update the precision
parameter αk’s (k = 0,−1, 1); here, by introducing an additional auxiliary parameter to sample
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along with each αk, the conditional posterior distribution for αk can be reduced to a mixture of
two Gamma distributions, which conveniently transforms its sampling step to a simple Gibbs
step. Exact technical details are provided in Ji et al. (2009) and Escobar and West (1995).

BVN mixture components (θkh,Σkh)’s: For the bivariate normal mixture model of
each type k, we introduce a component latent indicator zi for each data point i (that belongs
to type k) such that zi = h indicates point i belongs to component h. Assuming semi-conjugate
priors θkh ∼ BVN(θ0,Σ0) and Σkh ∼ inv-Wishart(ν, S0), we then iteratively update zi’s and
(θkh,Σkh)’s using

Pr(zi = h | wkh, θkh,Σkh, si) ∝ wkhφ(si | θkh,Σkh);

θkh | Σkh, {zi}, {si} ∼ BVN

(
(mhΣ

−1
kh +Σ−1

0 )−1

( ∑
i:zi=h

Σ−1
kh si + θ0Σ

−1
0 θ0

)
, (mhΣ

−1
kh +Σ−1

0 )−1

)
;

Σkh | θkh, {zi}, {si} ∼ inv-Wishart

ν +mh,

(
S−1
0 +

∑
i:zi=h

(si − θkh)(si − θkh)
T

)−1
 .

Here φ(· | θ,Σ) is the density function of a bivariate normal with mean θ and covariance
matrix Σ, and mh =

∑N
i=1 1(zi = h) is the total number of data points belonging to spatial

component h.
Type labels ci’s: The type label ci can be sampled for each data point i conditioned on

all other parameter values via Pr(ci = k | Θ) ∝ pkfk(si)ϕk(xi). A pseudocode summary of
these updates appears in the Supplement.

4 Simulation studies

In this section, we validate the model framework through simulation experiments. In particu-
lar, we assess whether the inferential procedure can successfully identify different underlying
patterns of HIV transmission flows, in terms of both gender and age structures. Moreover,
we explore the power and precision of the identification of underlying patterns given various
sample sizes.

We focus on comparing two pairs of different scenarios that are of epidemiological interest:
1. proportions of male-to-female (MF) and female-to-male (FM) transmission

events. One general finding from HIV transmission flow studies is that there tends to be
more male-to-female than female-to-male transmissions(Hall et al., 2021; Bbosa et al., 2020;
Ratmann et al., 2020), and thus it would be important for a modeling framework to recognize
such a pattern if there is indeed a difference in the proportions of transmission directions. We
consider two scenarios here: (1) “MF 50-50”, where male-to-female (MF) and female-to-male
(FM) events take up equal proportions among all the real transmissions; (2) “MF 60-40”,
where MF transmissions occur more frequently and constitute about 60% of all transmissions.
Again, relevant model parameters for each scenario are detailed in the Online Supporting
Information.

2. age structure of male sources for infections in young women. There is a
general interest in the age distribution of the male sources of HIV infections, especially for
young women aged 15 to 24, such as the ratio between younger men (aged around 25, within
about ±5 years age difference of female recipients) and older men (aged around 35, > 5 years
age difference) as infection sources. Under our framework, this can be simulated via the
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BVN mixture model of the density function f1(·) (the density function for MF transmissions).
We consider two scenarios with respect to the age structure of male sources: (1) “same age”
scenario, where younger male sources (∼ 25 y.o.) contribute to about 60% total infections, and
older male sources contribute around 30% (with the other 10% attributed to other age groups);
(2) “discordant age” scenario with the ratio reversed, i.e., older male contribute about 60%
infections while younger male only contribute 30%. The relevant model parameters for each
scenario are detailed in the Online Supporting Information.

We explore 5 different sample sizes (i.e., numbers of likely transmission pairs) with N =
100, 200, 400, 600 and 800. 100 independent simulations are run for each scenario and each
sample size N . For brevity, we include all the parameter and prior choices in the simulation
study in the Online Supporting Information.
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Figure 2: Model performance in latent transmission pattern identification with various event
sizes. Top: posterior mean proportions of infections from younger men v.s. older men in
Scenarios 1 and 2. Bottom: posterior mean proportions of MF and FM transmissions in
Scenarios 1 and 2. The dashed lines mark the true proportion values, and the short solid line
in each box marks the median of posterior means. Results are plotted using 100 simulation
runs for each scenario and event size.

The simulation experiment results are summarized in Figure 2. Each box in the boxplots
profiles the distribution of posterior median proportions (of a transmission direction or a male
source age group) across 100 simulations with a specific event size N and a certain scenario.

11



In the top row, we show results for the proportions of male-to-female (MF) and female-to-
male (FM) transmission events. The proportions are expected to be equal in Scenario “MF
50-50” (left) and MF events proportion is higher in Scenario “MF 60-40” (right), with true
values marked with horizontal dashed lines. As sample size N increases, the posterior means
concentrate more tightly around the true values. Even with moderate small sample size (like
N = 200), we have relatively accurate inference results.

In the bottom row, we illustrate inferences of proportions of younger (red) versus older
(blue) male sources of infections, with scenario “same age” on the left and scenario “dis-
cordant age” on the right. Similarly, inference accuracy gets improved with a larger sample
sample size. Even with a small sample (like N = 100), the relative relationship between the
two proportions is inferred correctly, although the difference between them seems to be over-
estimated. Such over-estimation is likely due to the parsimony behavior of DP priors that tend
to assign data points to the biggest existing clusters when there are not enough data to admit
a new cluster, and so more points would be attributed to the component with the highest
weight when N is small; this effect is mitigated as N increases. With a moderate sample size
of N = 400 (smaller than the size of the real dataset), we already have satisfactory estima-
tion precision for these mixture weight parameters. Also, in comparison, inference for source
age proportions is harder (thus less accurate) than for the direction proportions (in top role),
as there are fewer proportion parameters (only 3 entries in p) to infer for the transmission
direction than for the spatial patterns (6 BVN mixture components in this simulation study).

We can also inspect the posterior credible intervals as well as inference properties such as
MCMC convergence. In Web Appendix B of the supporting information, we include additional
plots to show that 95% credible intervals for the quantities of interest provide satisfactory
coverage and have decreasing widths as N increases. In addition, by examining traceplots
(also in Web Appendix B), we can check for convergence of the sampling algorithm.

5 Case study: inferring transmission flows by age from viral
sequencing data

Note by authors: In order to preserve data autonomy of African countries and
protect private health data of study participants from Uganda, results of the
real data analysis have to be redacted from this online version. The full analysis
results are under extensive, months-long review of the data consortium due to data
regulations. The full manuscript, however, can be provided and shared privately
upon request.

In this section, we analyze data containing demographic information and viral sequencing
data collected in the in the Rakai Community Cohort Study between August 2011 and January
2015 (Ratmann et al., 2019, 2020; Xi et al., 2022). Recall for a point si on the age-by-
age surface that denotes the ages for a pair of individuals, we are uncertain about its type
label ci, which could be 0 (no-event), 1 (male-to-female transmission), or −1 (female-to-male
transmission). In the subsequent analyses, we aim to address such uncertainties with our
model.

Using our framework, two modes of inference will be conducted: first, we fit the full
model which does not require any fixed thresholding or pre-classification of the data. Second,
and to illustrate the effect of learning the transmission statuses, we utilize a pre-specified

12



point classification, and fit the remaining parameters to learn the continuous spatial process
component describing age structures in transmission flow. The second analysis is more similar
to that in Xi et al. (2022) while operating in a continuous framework rather than one requiring
discretization. Moreover, we will compare results from our two analyses in order to highlight
the new insights revealed by the more flexible joint estimation framework.

Settings and data processing. After thresholding paired samples with linkage scores
smaller than 0.2 as a preprocessing step to remove highly unlikely true transmission pairs,
our analysis focuses on the 526 remaining pairs. These 526 filtered pairs are potential can-
didates for transmission events, but our model will probabilistically learn the likelihoods of
their transmission links from information provided by data. Even for a pair that is highly
likely to be linked through disease transmission, we do not have direct knowledge about the
transmission direction and the model will also probabilistically characterize the likelihoods of
each transmission direction.

In both analyses, we adopt the same priors as described in Section 4 and run the MCMC
algorithm for 3000 iterations with 1000 burn-in steps. In lieu of a detailed report of runtime,
we note that the full MCMC inference algorithm on a laptop with a standard 4-core Intel
CPU takes less than 10 minutes, which is a drastic improvement of efficiency compared to
prior work, where 4000 iterations would take about 30 hours. Despite the complexity and
flexibility of the model, we see that posterior inference is efficient, opening up the possibility
of analyzing larger-scale datasets.

Full analysis: with flexible point types (“Model”). We first apply the full model
to learn transmission events and their directions probabilistically. This means that we can
reduce the amount of prior information and data pre-processing work needed to specify the
types of pairs deterministically, and we can address the intrinsic uncertainties in the data
by allowing the phylogenetic analysis outputs (linkage and direction scores) to quantitatively
inform inference. More specifically, instead of assuming a hard threshold and allocating points
to fixed type labels, we adopt a “soft-thresholding” method through the score distributions
defined in Section 2: If the linkage score ℓi is not close enough to 1, then pair i may not
be linked in a transmission event, and if the direction score di is near 0.5, then pair i might
represent either a male-to-female or a female-to-male transmission event. We accommodate
such uncertainty in our analysis by not fixing the point types, but instead only specifying
the parameters µd and µ−d, which are the centers of MF transmission direction scores and
FM transmission direction scores, respectively. All the other parameters in the full model are
assumed unknown and need to be learned. This means that we need to run all the steps in the
inference algorithm, but simply with µd and µ−d fixed. In this case study, we choose µd = 1.5
and µd = −1.5, which implies that the di’s with i = 1 are centered around 0.817 and the di’s
with i = −1 are centered around 0.182. We note that results are not sensitive to changes in
these chosen values within a reasonable range; additional case study details can be found in
the Online Supporting Information.

Partial analysis: with fixed point types (“Fixed”). In the partial analysis, we use a
rule-of-thumb criterion suggested by domain experts (similar to that used by Xi et al. (2022))
to determine the occurrence and direction of a transmission event: for a pair i, if ℓi > 0.6, we
believe that a real transmission event took place between i1 and i2, and further, if di > 0.5 the
transmission was male-to-female (MF), and otherwise it was female-to-male (FM). Following
this heuristic to allocate point types, we may consider all the type indicators ci’s as known
and fixed, and only focus on learning the spatial patterns for each type separately. As a result,
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inference reduces to inference for the DPGMMs (the spatial component) only, as all remaining
parameters are either fixed or can be sampled directly in a Monte Carlo step.

In the remainder of this section, we will first present our main results and discussion of
the learned age structures of HIV transmissions. We then take a closer look at our inference
results and examine the inferred transmission age patterns; we will discuss similarities and
differences between the full and partial analyses, and meanwhile demonstrate how our method
is able to leverage more data information with more consideration of uncertainty. We shall
point out that all analyses presented in this section are based on data collected between 2011
and 2015, with transmission dynamics possibly different from patterns in more recent years.

5.1 Main results: identified transmission events and learned age structures
in transmissions

Full results redacted due to data regulations. Available to interested parties upon
request.

5.2 Transmission age structure in more detail, with uncertainty

Full results redacted due to data regulations. Available to interested parties upon
request.

6 Conclusion

In this paper, we develop a Bayesian hierarchical spatial Poisson process model to learn dis-
ease transmission structures that are not directly observed, and apply it to analyzing HIV
viral deep-sequencing data to uncover the transmission flow between different age groups at
the population level. Our framework is novel in that it does not require any fixed thresholds
or pre-specified classification on the data points about the transmission relationships between
potential pairs of sources and recipients. We can probabilistically learn such unobserved rela-
tionships — whether or not there is transmission between a pair and in which direction the
transmission occurs — with a fully Bayesian inference algorithm. Moreover, our method is
based on a continuous spatial process that, unlike previous work (Xi et al., 2022), does not
require discretization of the feature space and thus avoids keeping track of all cells in a large
transmission flow matrix in computation (our method only needs to track all the data points).
This advantage by construction has made our method much more computationally efficient.
Our more flexible, generic framework allows inclusion of more data in analysis while accounting
for the intrinsic uncertainties associated with outcomes of deep-sequence phylogenetic anal-
yses. In our simulations and real data case study, we demonstrate that our new method is
able to effectively exploit richer information from data and bring new insights into valuable
epidemiological questions. Most phylodynamic analyses into the age-specific drivers of HIV
transmission are limited to analyses of relatively coarse age bands, either for technical or com-
putational reasons (De Oliveira et al., 2017; Le Vu et al., 2019; Bbosa et al., 2020). In this
context, the model proposed here further extends ongoing and epidemiologically important
research to enable inferences of high-resolution transmission flows.
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There are several future directions that one may take based on our proposed framework.
It may be of interest to incorporate individual-level covariates into the spatial process, either
as additional marks or latent effects of the Poisson process (e.g., Hu and Bradley (2018)) or as
additional covariates in the signal distributions. Also, extensions to non-normal components
in the spatial density function mixture model can help relax certain assumptions entailed by
a normal mixture model; for example, if similarity of transmission behavior is not necessarily
dependant on spherical spatial proximity (an implicit assumption of the normal model), then
some other kernels (e.g., bivariate Beta, as in Kottas and Sansó (2007)) could be considered.
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